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We report a theoretical study of various structures of chiral nematic liquid crystals, confined to submicrome-
ter cylindrical cavities with tangential anchoring conditions. The Frank-Oseen free energy with additional
surface energy terms is used to find nematic director fields, free energies, and stability diagrams of relevant
structures. The dependence of various chiral nematic structures on the chirality parameter, pore size, elastic
constants, and polar and azimuthal surface anchoring strengths is studied. We are particularly interested in the
influence of the saddle-splay elastic constant on the structures. For ordinary values of material parameters, only
radially twisted and asymmetric conical structure are stable. The former is stable at low chiralities, while the
latter is stable for high chiralities. The radially twisted structure is commonly known as double twisted
structure, while the asymmetric conical structure has not been considered, to the authors’ knowledge. The
phase diagram including both structures is determined by comparing their free energies. Theoretical predictions
are in agreement with available experimental de$d.063-651X96)01811-9

PACS numbsgs): 61.30.Cz, 64.70.Md, 61.30.Jf, 68.10.Cr

[. INTRODUCTION In Sec. Il we establish theoretical grounds for our phe-
nomenological description of structures. In Sec. Il we dis-
Chiral nematic liquid crystals attract interest for funda- cuss relevant solutions of the Euler-Lagrange equations for
mental and practical reasoi$,2]. Since the discovery of various model structures. We also compare the correspond-
polymer dispersed liquid crystals numerous experimentaing free energies and calculate the stability phase diagrams.
and theoretical works have been performed on liquid crystal§? Sec. IV we analyze some available experimental results
confined to spherical and cylindrical geometries. Membranednd estimate values of both anchoring strengths and the
with well-defined submicrometer cylindrical pores allow for Saddle-splay elastic constant. In Sec. V we discuss results
detailed studies of highly curved confinemégt4]. Cavity ~ and give a conclusion.
walls may be chemically treated to achieve the desired an-
choring conditions. The behavior of chiral nematics in the Il. FREE ENERGY
curved confining geometry was reported by Cladis, White,

and Brinkmar(5]. Using optical polarizing microscopy, they nematic director fieldi(f) with an equivalence ofi to

studied chiral nematic structures in supramicrometer capil-_ﬁ We nealect the biaxiality and space variation of the
lary tubes with homeotropic anchoring near the transition to__ 9 y P

the smecticA phase. Lequeux and Klemds] observed a scalar nematic order parameter. Polar coordinates andz
helicoidal instability. of the double-twisted structureb- are used for the calculation of the director fields and corre-
served also in blue phases and here more precisely called t tngqrgg.gﬁeofe&eer%'ﬁ.sngefﬁ'ngr'\i\% %ic:]rgg%ewr:; I(I;rtho—
radially twisted structurein capillary tubes with homeotro- irect Yl XIS. P

pic anchoring by polarizing microscope. Beziad Zimer normal set of vectors bg, , €,, andé,. The free energy of

studied defects of chiral nematic model structures in spheri.f—i chiral nematic liquid crystal in a cavity is usually divided

cal and cylindrical confining geometfy,8]. NMR is a use- into a bulk and a surface term

ful tool for investigations of nematic structures in submi-

crometer pores, where the optical microscopy is too rough F=f fvdv+f f<dS. D
[9-11]. Using deuterium NMR spectroscopy, Ondris-

Crawfordet al[lO] studied a pitCh-induced transition of chi- The bulk Frank-Oseen free_energy deniﬂ?] is a sum of

ral nematic liquid crystals in submicrometer cylindrical cavi- ejastic deformation energy terms with different symmetries
ties in Anopore membranes.

We study defectless chiral nematic liquid-crystal struc- f, —1[K,,(V-17)2+ Ky i+ VX i+ )2+ Kaa(1X V X )2
tures in cylindrical cavities with radii small compared to the
cylinder lengths, so that end effects can be neglected. We — K,V - (AXVXA+AV-[)], (2)
investigate two kinds of planar anchoring conditions: degen-
erate planar anchoring and anchoring with the preferred diwhereK;, K5, andKs; are splay, twist, and bend elastic
rection parallel to the cylinder axi@bbreviatedz anchor-  constants, respectively, aritl,, is the saddle-splay elastic
ing). We calculate nematic director fields, free energies, andonstant. To make our discussion as simple as possible we
stability ranges of radially twisted structures and other modebmitted the K5 (splay-bengl energy term. The positive
structures, with twist axes parallel or perpendicular to thechirality parameteq corresponding to the right-handed helix
cylinder axis. is inversely proportional to the pitch of the unconfined phase:

Our chiral nematic liquid crystal is simply described by a
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g=2m/p. We call it the “natural inverse pitch” to distin-
guish it from the “actual inverse pitch’tj’ in the confined
geometry.
In the case of homogeneous planar anchoring the surface
free-energy density in the Rapini-Papoular approximation
[13] is the sum of a polafout-of-plane and an azimuthal T
Z

(in-plang surface elastic term. For the description of experi-
mentally studied Anopore membranes, nondegenerate planar
anchoring with the easy axis parallel to the cylinder gzis
axis) is assumed. This anchoring direction is probably effec-
tively enforced by slightly nonspherical cross sections of cy-
lindrical cavities. Thus one can write

fs=3(Wysirfe' +Wycod e’ )sinte’, )

whereW,, andW, are the azimuthal and the polar anchoring
strength, respectivelyy’ is the angle between the nematic

director and thez axis, and¢’ is the angle between the
(n,€,) plane and thed; ,E,) plane. In the case of degenerate
planar anchorinyV, is zero and the surface free-energy den- . .
1 wist manifold
sity reduces td s= :W,sir’, whered is the angle between
the nematic director and its projection on the boundary
plane. We focus our attention on the approximation of equal Twist axes (v2) (xy)
splay and bend elastic constari{s;=Kss. This yields a
simple free energy and the corresponding Euler-Lagrange

equations. Nevertheless, the solutions have all the relevant 5rcture LA IZH |
features of more general ones. Furthermore, we limit our-
selves to cylinder radiR small compared to lengths To

avoid a strange kind of anchoring, where the preferable plane

would be €,,€,) instead of €4,€,), we take into account

the conditionW,<W,. It is convenient to introduce dimen-

sionlesy*“reduced”) quantities for the radius vector, chirali-

ties, elastic constants, and anchoring strengths: FIG. 1. Upper part: simple chiral nematic structures in cylinder
cavities: (a) axial (A), (b) z helical (ZH), (c) y helical (YH), (d)
r bipolar helical (BH), (e) simple conical(SC), and (f) radially
PR’ (4) twisted (RT). An arrow indicates the direction of theaxis. Bot-
tom: grouping of all discusseldncluding yz twisted (YZ), bipolar
conical(BC), and asymmetric conic#hC)] structures according to

Q=aR, 5) their twist character. Arrows indicate the generalization of one
structure into another.
Q'=q'R, (6)
Ill. MODEL CHIRAL NEMATIC STRUCTURES
’C22: K22/K33, (7) IN CYLINDERS
A straightforward search for general structures in cylin-
Koa=KaalKss, ®) drical cavities with planar anchoring would be a big numeri-
cal task. Therefore, we instead choose various model struc-
Wy=RW, /K3, (9)  tures and check for their thermodynamic stability. According
to the twist character, we can divide them into three main
Wy=RW, /K33, (100  groups. In the first group there is only the axial) structure
with no twist. In the second group there are structures with a
E twist around a single axis. Furthermore, we can divide this
T (11 group into two subgroups, where the chosen twist axis is
3™ (along the cylinder axjsor y (perpendicular to the cylinder
axis), respectively. In the first subgroup there ardelical
Wi=Wot Wy, 12 (ZH) structure and bipolar helicdBH) structure, while in
the second subgroup we hayenelical (YH) structure. The
W_=Wy=W,. (13)  third group, which contains structures with a twist around

two axes, can also be divided into two subgroups. In the first
In the following section we describe chiral nematic structureone, where the local twist axes ayeand z, there is ayz
that were considered in our search for the most stable chirdWisted (YZ) structure and three kinds of conical structures:
ordering. simple(SO), bipolar(BC), and asymmetri¢AC). In the sec-
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ond subgroup with twist axes andy there is only radially
twisted (RT) structure. In Fig. 1 the majority of these struc-
tures are schematically presented; also the twist character
and connections between different structures are shown. The
number and directions of local twist axes need not be seen
immediately, but one can determine them by using the twist
pseudotensor introduced by Kilian and Soniet].

A. Axial structure

In this structure the nematic director is parallel to the
cylinder axis:n=§€,. lts free energy originates from the
twist elastic termF=3Q The axial structure is stable only  FiG, 2. Nematic director field of the BH structure fiti,=1,
in the limit of zero chirality. W_=4, and three different values of chiralit@=0 (solid lines,
Q=2 (dashed lines and Q=5 (dotted lines.

B. z helical structure - .
chirality, except that the symmetryaxis rotates around the

This structure corresponds to the helical structure of unz axis. For higher chiralities the director field in the helical
confined chiral nematic liquid crystals, with the helical axis plane is better aligne¢Fig. 2) and in the high-chirality limit
parallel to cylinder axisfi=(cosqzsinqgz0). Its free energy we obtain az helical structure. The actual chiralit®’ is
is equal to W, . somewhat smaller than the natural val@e The difference

Q— Q' is smaller than 0.2 in the whole ran¢@<Q<« and
C. Bipolar helical structure 0<Wy<5) that we studied. The difference is the largest for

) ) o ) chiralities of order 1. In the zero- and high-chirality limit the
This structure is a generalization of a planar bipolar strucyitference between chiralities vanishes.

ture [9], which is characteristic for nonchiral nematic ||qU|d For fixed values of other physica| parameters the calcu-
crystals, confined to cylinders with concentric planar anchoriated free energy increases with chirality. In the high-
ing. The director field of a bipolar helical structure can bechirality limit the free energy approaches the helical value
written as fi=cos/(p,¢')&+sin(p,¢')€;, where ¢ is the WLI2.

angle between the radius unit vec&rand the local nematic

director. The rotation of the symmetry axisaround thez D. y helical structure

axis is incorporated in the linear increase of the polar angle
yielding the polar angle in a rotating coordinate systemy,
¢' = ¢—q’z. The actual chiral parametgf can be different
from the natural oned). Since the BH structure has already
been reportegsee the axially twisted planar bipolar structure

in Ref.[10]), only a short description will be given here. The just mention the somehow surprising result that the YH free

twist elastic constant can be integrated into the inverse pitc nergy has been found to be always lower than the ZH and
Q— JK22Q or Q' —K5,Q'. So it is sufficient to describe gy free energies

the K,,=1 results. Th&,, energy term is zero in this struc-
ture. The minimization of the Frank free energy results in a
partial differential equation for the anglg which is solved
numerically. Finally, the actual inverse pitei is adjusted In the yz twisted structure there is a twist of the nematic
to give the lowest free energy. The nematic director does natirector around two axes: the cylinder axis and an axis,
depend on the azimuthal and polar anchoring strengths sepperpendicular ta@, say, they axis. The nematic director can
rately, but only on their differencl_. The free energy can be written as

be written as a sum of a part, which corresponds to degen- . S o

erate planar anchoring, and an azimuthal anchoring strength n=(coqq'z)sinB,sin(q’ z)sinB,coRB), (15

F(W¢,WB,Q,_. .)=FOW_,0,.. .1)+W¢._ In the case of | here B=q'y'+a and y'=—xsin(q'z)+y cosq'z).
equal anchormlg strengths/y=)V,=3)V, this reduces tothe  gre 3 is the ‘angle of the rotation of the nematic director
z helical value; W, . _ around the locay’ axis with inverse pitchy”, while the axis

In the limit of zero chirality the solution converges to'the y' rotates around the axis with inverse pitchy’. If there
ordinary planar bipolar structurd] for nonchiral nematic |45 no rotation around theaxis, the nematic director would
liquid crystals: be fi=(sinB,0,co) with B=q"y+a. In this case one
) would have a helical structure. With the additional rotation

y helical structure is similar ta helical structure, except
at here we have a twist of nematic director aroundythe
axis rather than around theaxis. To avoid a repetition, we
will describe the behavior of the free energy together with
the results for a more genenak twisted structure. Here we

E. yz twisted structure

1+ yp?

¢(p,¢)=—arctar€tan¢ T2 (14)  around thez axis, both nematic director components and
—Yp

Cartesian variables must be transformed. On the other hand,
the z helical structure is also a special case of ylagwisted
where y=&+1—¢ and &=2/W,. For small chiralities structure. We have added an optional angl¢o the twist
0<0.5 the use of Eq(14) is justified, except¢p must be angle 8, which influences the free energy. Similarly, we
substituted byp'. The shape of the nematic director field in could add an angle to the twist angjéz around thez axis,

the “helical” (x,y) plane is nearly the same as for zero but this would have no effect on the free energy because we
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assume long cylinders and periodicity in thdirection. First
the free energy is calculated and then the free paramgters
q”, and « are adjusted to minimize it. In confined systems,
both chiralitiesq’ and q” are generally different from the
natural chiralityq. The nematic director can be easily trans-
formed into cylindrical coordinates

n=sinB cosp’€,—sing sing’€,+ CcoBE,,

where, as for the BH structure,’ = ¢ —q'z is the azimuthal
angle in the coordinate system rotating aroundzlagis. To
make equations simpler, we calculated the bulk and surface &,
free-energy densities only in the case of equal elastic con-
stants:

Q',

K
fv:ﬁ [(Q"— Q)%+ (2(1-K) Q' Q"
—2QQ'+ Q')siPB+(Q'Q"p cosp’)?], (16)

ff% (W4SIn? ¢+ W,yCoS ) it B. (17

Of course, here we tak@=qR, and similarly forQ' andQ".
According to the relation for the Bessel functions 0
J,(X)=(1/27) [ 3™ codx sing—ne¢)d¢, the resulting di-

mensionless free energy is

0 2 4 6 8 10

FIG. 3. Actual inverse pitches of YZ structure as functions of
1 Q' natural chirality foriC,=1, W,=W,=3, and different values of
F= > (Q"— Q)%+ e [2(1-K,)Q"—20+ Q'] saddle-splay elastic constait;,=0 (solid lines, K,,=0.5 (dashed
lines), andK,,=1 (dash-dotted lings The dotted line indicates the
J1(29") 1 1 limit @"=Q. All chiralities are dimensionless.
X | 1—cogq2a) o +3 (Q' Q"%+ 1

X{W,[1-cod2a)Jo(2Q) ]~ W-cod2a)I(2Q)}- This structure is also a generalization of thehelical

(18) structure, which was suggested by Schmiegtehl. on the
basis of their NMR and optical experiments5]. A deflec-
The anglea can be either 0 orr/2: this corresponds to the tion of the nematic director field out of they plane is al-
nematic director at the cylinder axis parallel or normal to thejowed, but its projection to that plane is assumed to be
axis, respectively. The optimal value of the chirality aroundin one direction: fi= siné(p)cos@' 2&+sind(p)sin(q'2)§,
thez axis Q' can be expressed in terms ©f. The optimal  +cos¥(p)é,, where the tilt angled depends only on the
value of Q" is obtained numerically. Keeping anchoring radius p. The nematic director, rewritten in polar coordi-
strengths and’;, fixed while increasing the natural chirality nates, is equal to fi= sing(p)cosg’€,—sind(p)sing'&,
Q, there are alternating intervals, where-0 or 7/2. Atthe 1 cosj(p)é,, where, as in the BH case, we introduce the azi-
transition pointsa=0«<a=m/2 there are also discontinuous muthal anglep’ = ¢—q’'z in the rotating coordinate system.

jumps in Q', Q", and the slope of energy as functions of  After integration overg andz the expression for the re-
natural chirality. ThetCy, elastic energy term lowers the total duced free energy becomes

free energy, but otherwise it does not have a significant ef-
fect on the nematic structure. In Fig. 3 the dependence of 1
both actual chiralities on the natural chirality is shown for a _J
particular choice of anchoring strengths. We have found that

for all anchoring strengths between 1 and 10 and for natural vo
chiralities from 0 to 30 the twist around ttzeaxis is negli- + (K= 1)Q' ?sirf'6
gible in comparison to the twist around thexis. Q" and Q"

are comparable for low chiralities, but for the effective twist- (19

ing about thez axis only the very small projection of the

nematic director on thety plane counts. The graph for all The minimization of the free energy with respect to the angle
examined anchoring strengths is qualitatively the same as ip leads to the equation

Fig. 3. The zero-chirality limit of theyz twisted structure is

the axial structure, while the high-chirality limit is the )

helical structurgwith Q@"— Q) and the limiting free energy d“6 1dé (20)

is 2, , equal to half of thez helical value. dp? pdp Asin26—Bsin49=0,

F. Simple conical structure

2
) —(2K,,Q' Q— Q'?)sirt6

1+IC22(d6

ol 2 dp

K W
p dp+ 722 0%+ T+sin20(l).
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of reducing the free energy and making the conical structure
stable in a part of the calculated phase diagram.

In the first model, which we call bipolar conical structure,
there is an additional deformation of the nematic director in
the (x,y) plane. In the second modification we neglect this
deformation, but consider the dependence of the conical tilt
angle on both the radius and the azimuthal angle. The mirror
symmetry with respect to loca’ andy’ axes of the tilt
angle is therefore broken, which we stress by introducing the
term asymmetric conical structure.

We must emphasize the similarity of the twist character of
theyz twisted structure and all our conical models. Although
it may seem at first glance that for conical structures there is
only a twist around the axis, in fact, there is also a local
twist around the rotating’ axis because of the tilt of the
nematic director out of thex(y) plane. Let us now describe
in more detail the two modified conical structuréSecs.

I G and Ill H).

G. Bipolar conical structure

The nematic director in this case is a combination of
the BH and SC structures:ii=siné(p)cosi(p,¢’')E,
+siné(p)sing(p,¢')€,+cosh(p)€,, where again ¢'=¢
—q’z. We require the symmetry of the nematic director with
the respect to both the’ andy’ axes in the rotating coordi-

FIG. 4. Reduced free energy of different structures as a functiomate frame, as in the case of the BH structure. The tilt angle
of the reduced chirality parameter fii,,=1, K4=1, W,=4, and  depends only on the radius, as in the simple conical model.
two values ofW,: O (full lines) and 2(dotted lines. Minimization of the free energy with respect to variables

6 and ¢ yields a coupled system of an ordinary and a patrtial
where we have introduced the constanﬁ;s:[lc%l differential equation, which is solved numerically, and then

14,1200 -0 and B=[(1—K-.)/2(1+K 2 the free energy is calculated. The free energy is minimized
(The bzé)u]gdgr% co%dizion i [(1=K22(11K2)1Q with respect to the twist parametéy'. It turns out agairas

for the BH structurg that the actual inverse pitch can be

approximated by the natural one. Keeping, and W, fixed
sin2g ~0. 21) and increasing the inverse pitch we get three structures, as in

the case of the simple conical model. Instead of the phase
sequence A>SC—ZH, we have now the sequence
. . . . A—BC—BH. The BC free energy is very near the SC value
This equation is solved by the relaxation method for ordinary, aimost all cases, except near the-B8H transition. It is
differential equations. As in the BH case, thg, energy g pigher than the RT free energy. Also the boundary val-
term has no influence on the simple conical structure. The .c of the chiralitiesd, and Q,, where continuous transi-
nematic director and free energy do not depend on each alyhs happen, are almost the same as in the simple conic
choring stre_ngth separately, but only on their SW‘%‘- .._model (for the same anchoring strengthIhe main differ-
_ The relation between the actual and natural inverse pitcRce is that here we have a transition to a bipolar helical
|s,d|fferent. from that in the BH case. Fdl,,>1 we get g cture instead of to a helical structure. But at the point
Q'>Q, while for K'5,<1 the opposite is the case. For equal o \yhere this happens, the BH structure is almost equal to
elastic constants the inverse pitches are equal. For #Xed e nejical limit ZH structure. So the BC modification of the

we get three different structures for different values@f iy e conic model does not bring any qualitative difference
For Q<9, the axial structure is stable; conical structure per-, ha predicted behavior of the liquid crystal

sists betweerQ,; and Q,; above Q, we have thez helical
structure. The bottom limi©, and the upper limiQ, of the
SC structure are increasing functions ¥f, . Both transi-
tions at Q, and Q, are continuous. Of course, A and ZH  Here the ansatz for the nematic director is the same
structures can be viewed as limiting cases of the SC stru@s in the simple conical model, except that we allow
ture. Unlike the BC structure, the SC structure convergeshe angular dependence of the tilt angle as well as the radial
into the ZH structure at finite chirality parameters. dependence fi=siné(p,¢")cosq’2)€+sind(p,¢')sin(@'2)€,

The problem with this approximation for the conical +cosi(p,¢')€,. As before, we use the notatiehl = p—q'z.
structure is that for common values of physical parameter§Ve consider the case of equal elastic consténts but we
its free energy is always higher than the free energy of thallow the variation ofK,,. We require no symmetry of the
radially twisted structurgFig. 4). Therefore we introduce azimuthal dependence of the tilt angle. This has significant
two further modifications of this simple model with the aim consequences on the equilibrium nematic director field, re-

dé 4%

+
_+—
dp 201K ),

H. Asymmetric conical structure
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FIG. 5. Comparison of the nematic director field of a simple coniledt) and an asymmetric conicélight) structure in the X',y’)
plane. Heads on the nails indicate the inclination in the negatigieection. The parameters ak&,=1, W,=W,=3, andQ=2.2.

sulting free energy, and the stability of the conical structurechiralities above some critical value the tilt angle at the cyl-

The expression for the bulk free-energy density is inder axis is different from zero and the twist of the nematic
director about thez axis becomes appreciable. For still
fV:LZ (‘9_‘9) ( 1 Q!Z) ‘9‘9) higher chiralities we gef(p)=m/2 and the structure be-

2R [\ dp g’ comes more similar to planar structures. The chirality about

90 5 the z axis rises and in the high-chirality limit it approaches
+2(Q'sit0— Q)—sing’ + —(Q'sirto— Q) the natural valugif 1C,,>0). The Ky, energy term is very
ap p important in the asymmetric conical structure. In the high-
chirality limit it makes its energy even highly negative, thus
(22) much lower than the RT and YZ free energies. It also makes
the structure planarlike, although not completely planar.
Only in the caseC,,=0 does the AC structure approach the
y twisted structure in the high-chirality limit. With increas-

cos¢ +(Q'?-2Q0Q")sirt 9+ Q?

a¢’

and the surface free energy density is equal to

fs=om (Wysinte' + W,cod ¢’ )sin? g 0
a0 1
— K49’ ( PPy —C0Sp' — —sm2¢9$|n¢> (23

The resulting Euler-Lagrange differential equation is

70 1 0 (1. oo 70
S+ Q| —2
p° p r9p ¢

1
+3 (20Q' — Q'?)sin26=0, (24)

a(p)

with the boundary condition

20 ) ) )
%+(1—K24)Q’sm203|n¢’ — Qsing’

1
+ S(Wysint o’ + W,co$ ¢')sin2d] -, =0. (25

This differential equation is solved numerically by the relax-

ation method. It turns out that for many physical parameters

the sinusoidal dependence of the conic angle is quite a good

approximation:9(p,¢")~f(p) +g(p)sing’, wheref is a de- P

creasing function of the radius, whilg increases with the

radius andg(0)=0. This contradicts the simple conical  F|G. 6. Amplitudeg of the sinusoidal modulation of the conic

model (Fig. 5). angle in the AC structure as a function of the reduced rddiuthe
For low chiralitiesf=0, g is approximately linear, and approximation 6(p,¢')~ m/2+g(p)sing’]. The parameters are

the nematic structure is similar to the YZ structure. Forw,=4, W,=2, K,,=1, and different values of.
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FIG. 7. Twist angle of the RT structure at the cylinder boundary
as a function of the reduced chirality fé,,=1, »W,=0, and dif-
ferent values ofC,,: 1 (solid lines, 0 (dashed lines and —2 (dot-
ted lines.

FIG. 8. RT-AC phase diagram in tH&@,W,) plane fork,,=1
and W,=3. Both coordinates of the diagram are reducgithen-
sionless.

ing chirality towards very high values the functian be- The double twist character of this director field is pro-
comes more and more singular: it is almost zero inside, but inounced at the cylinder axis and gradually fades away for
sharply increases to a finite value at the cylinder boundaryincreasing radiug. This structure also plays an important
Some examples of this function are shown in Fig. 6. Thisrole in the theory of blue phas¢$6-18. The RT structure
indicates the possible formation of defects on the cylindricahas already been described[it0] and also in many other
boundary in the high-chirality limit. For low chiralities the articles[6], so we give just a brief description here. As in the
chirality Q' is smaller than natural chiralit@, but for higher ~asymmetric conical structure, the,, term is significant. It
chiralities their difference vanishes. acts in a way similar to surface anchoring, but contrary to
A more detailed description of this structure will be given anchoring it lowers the RT free energy and makes the RT
elsewhere, together with a more general model of the conicdglhase stable in a part of the phase diagram. The importance
structure, where also a deformation of the nematic directopf the K,, elastic constant has been appreciated recently and
field projection within thexy plane is included. This requires several experiments have been performed to determine its
the numerical solution of the system of two partial differen-value [19-21. The minimization of the Frank free energy
tial equations, so it takes a lot of computational time to coveleads to the ordinary differential equation for the twist angle,
enough of the parameter space. We have already succeedatiich is solved numerically. The solution far(p) and the
in using the more general model in some narrow range ofree energy depends strongly d@f,. The dependences of
parametersiespecially for very low chiralitiésand we have the angle at the cylinder boundan1) and of the free en-
found that the resulting free energies are very similar to theergy on chirality @ for fixed saddle-splay elastic constant
energies of the simpler asymmetric conical structure prehave some interesting properties. There is a qualitative dif-
sented here. ference between the ca%&,<0.36 and the cask,,>0.36.
In the former case the boundary twist angle is a continuous
function of the inverse pitch, while in the latter case there are
discontinuous jumps at particular values@fFig. 7). These
The nematic director of the radially twisted structure, genjumps are caused by the competition between the twist en-
erally known as the “double twisted structurg®,16], can  ergy term and,, term. The free energy as a function @f
be written agi= sina(p)€,+cosx(p)€,, where the twist angle has minima and maxima. Minima are always smooth, while
a between the cylinder axis and nematic director dependfor X,,>0.36 the derivatives of the free energy with respect
only on the radiug. Here the nematic director rotates aroundto Q at maxima are discontinuous. The free energy as a
any radial axis, i.e., any axis perpendicular to the cylindefunction of inverse pitch has a sawtooth shape. The period
axis. between the minima or maxima is approximately

I. Radially twisted structure
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FIG. 9. Comparison between tk@ experimental NMR spectra from R¢f.0] and(b)—(e) calculated spectra for a magnetic field parallel
(#g=0) and normal @g=90°) to the cylinder axis for different pitches. Dashed linegdnand(e) indicate the spectra of limiting helical
structure. Frequencies and intensities in theoretical spectra are dimensionless. Intensities are normalized in a way to make the area under the
curves equal to 1. For definition of the dimensionless frequency see the text.

IV. PHASE DIAGRAMS AND THE EXPLANATION example of the phase diagram for chosen parameters
OF EXPERIMENTS K22=K24=1 andW,=3 (Fig. 8) and focus our attention on a

We have found out that among all the structures that Wéjlslcussmn of a\_/a|lablebex%er(|jmenct:al d?taé L th
considered, only radially twisted and asymmetric conical ap- " @n experiment by Ondris-Crawforet al. the non-

pear in phase diagrams, except at zero chirality, where ngiral nematic liquid crystal 5CBed, (deuterated
have axial structure. The RT structure is stable at low chirali# -Pentyl-4-cyanobiphenyl with chiral agents CB15 and

ties, while the AC structure is stable for high chiralities. All CE2 (EM Industries was used10]. The chirality was con-
other structures have higher free energies. trolled by variable concentrations of chiral agents. The mix-
The simplest representation of the phase diagram is ogure was filled into the cavitieéR=0.1 um) of Anopore
tained by fixing the values of elastic constants and one of th@'embranes, which are supposed to give planar anchoring
anchoring strengths. Then the phase diagram can be showe@nditions. The director field inside the cavities was ob-
in two-dimensional space, where one coordinate is the inserved by deuterium NMR with the magnetic field parallel
verse pitch and the other is the variable anchoring strengttand normal to the cylindrical axis. Increasing the chirality of
Even in this case the computation of the phase diagram takeke mixture, the NMR spectra indicate a transition from a
a lot of time. Therefore we present here only one calculatedlefinitely nonplanar structure to a roughly planar structure at
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a pitch value of about 0.Zzm. The suggested low-chirality NMR spectra was obtained by rotating the NMR glass tube
structure was radially twisted, while the high-chirality struc- around its axis, where the pore axes were uniformly directed
ture was supposed to be bipolar helical with a planar directopormal to the rotation axis. Simulation of the angular depen-
field. Conical structures were not considered. Comparing théence of NMR spectra leads to the estimation of the tilt angle
free energies, we calculated phase diagrams with BH and Rdfistribution of the molecules with respect to thexis. They
structures. After comparing BH-RT phase diagrams for dif-2lS0 found the optical activity in their samples for a wide
ferent values of the saddle-splay elastic constastin the — 'ange pf chlral|_t|es_. Thg polarization of the light |.nC|de|f1t in
case of equal bulk elastic constants and degenerate planﬁ}e cylinder axis direction rotates around that axis, which is
anchoring, the valuéC,, was predicted to be 040.1. The not the case for the RT structure. They suggested the struc-

; i . ture to be simple conical. On the basis of the NMR spectra
anchoring strength was estimated alst;~0.15. Both the flor different directions of the magnetic field they calculated

value of the saddle-splay elastic constant and of the pol distributi ; cal le. In Fia. 10 t f their di

anchoring strength are an order of magnitude smaller thaat'ne istribution of conical angie. In 1g. WO of their dis-

the ones predicted by several other experiments. ributions[(a) and(b)] are compared to the ones obtained for
the asymmetric conical structurée)]. Unfortunately, the au-

Here we have shown that the high-chirality structure : e ;
should be asymmetric conical instead of bipolar helical form.thors [15] do not specify the chiralities used in the corre-

From the nematic director field the NMR spectra for differ- sponding expen_ments. T_her_efore, we Just _tak_e a set of pa-
ent structures were calculated, taking the half-width of Spec[ameters that yield qualitatively similar distributions. We

tral lines to be 0.1 by making a convolution with the Gauss-2iso calculated the angular distribution densities for the

ian curve. The value 0.1 is taken in units of normalizedangles between the nematic director andafeis for other

frequencyw, where the two peaks in NMR spectra of axial structures cons_;idered, but t_hey are all qualitatively different
structure with the magnetic field parallel to cylinder axis arefrozstcvee i);ri/in;?azzta:uf)ugglr?;sétructures appear to be stable
=+ '
?ntetgsufgj Iggzzr(&_igl. ' é? i%%?;g?éf?r? eoffotllho?/v(i:r?gl;.:ullziirﬁ(,j tzgd for degenerate anchoring pnanchoring. In the high.—c_hirality
low-chirality structure is really RT and we can also make an°as€ the stable gsymmgtnc conical structure exh|p|t§ a ‘qua-
estimation/C,,—W,~1. Thus the value ok, must be at siplanar” behavior. But it should be s';ressed that it is stable
least 1. From va?ious experimental data the actual vaIu%nIy because of the n(_)nzetK)24_ elastic energy term. For
seems to be 4K,,<2. Thus we investigated this interval 24=0 the structure with rotation of the nematic director
and by a comparison of RT and AC free energies we Obg;wound the axis, perpendpular to .the cylinder axis, is more
stable than the structure with rotation of the nematic director

tained the values of polar anchoring strengt,<1. On ; . )
the basis of this argument thié,, value seems to bae closer to around the cylinder axis. If we generalize the form of the AC
4 irector field to include the deformation of its projection in

2 than to 1. We estimated the values of the parametert | th truct ; ted 1o h f
K2~15+05, W,~05+05, andW,~0.5+05. Taking a € (X*yf) bp ;}”e’ € ”et".v struc “rle 'Sdeﬁpeﬁ N hol. "“I"et ea-
typical value of bulk elastic constant§; ~5x10 12 J/m, ures ot both asymmetric conical and bipofar hefical struc-

we obtain Ky~(7.5:2.5x10 2 J/m and W, W, tures. We have shown that upon increasing chirality the nem-

~(2.5+2.5)x 10°5 J/n. The agreement between the Spec_atic director field of the planar BH structure is more and
tra for the RT structure is very goofFigs. 98-9(c)] more aligned. But in the strong anchoring limit the strong
Agreement between the calculated and expérimental slpect formation of nematic director fields at particular points at
for the AC structure is somewhat wordeigs. 9a), 9(d), and € cylinder_ bo_qndarjzwhich results in defecipersists even .

9(e)], but nevertheless all important features of the spectréclOr high gh|rallt|es|. on .thethOtT?rhhaﬂ.d’ It{\el_AC_i s_lt_Luctufre IS
are qualitatively explained. The asymmetric conical structur oré and moré planar in the high-chirality imit. Theretore,
should be more planarlike, i.e., the calculated spectra shoul§'s expected that the gener_allzed_ AC structure is very simi-
be closer taz helical spect;zida'shed lines in Figs.(8) and lar to the BH structure for high chiralities. Thus, in the case
9(e)]. This inconsistency may appear because we do not treﬁl‘ very strong anchoring and high chiralities, the study of

the most general model, where we would also have a defo efects in the chiral p'?‘”af bipolar structure.s by Besicl
mation of the nematic director field within the,f) plane. Zumer [8]. may be of Interest, Iri8] topploglcal fea}tures

In theoretical spectrfFigs. 9b)-9(e)], the chiralities corre- were studyed, but not't.he dgtalled nematic director fields and
spond to experimental pitchefFig. @] p=1.13 um fr_e_e energies. In addition, it should be stress_ed that the sta-
—.0=0.56, p=0.66 um—Q=0.95, andp=0.25 um—Q bility of_ planf’ir st.ructgres could be.enhanced if the lpr.eferred
—25 ' ' anchoring direction i€, (concentric planar anchoripgn-

In another experiment, performed by Schmiedel and Cog,tead ofé,.

workers [15,27, optical measurements antH and *°C
NMR studies were performed on chiral nematic liquid crys-
tals adsorbed in Anopore membranes with cylindrical pores We have reviewed various model structures of chiral
of radius 0.1um. Three types of compounds were used:nematic liquid crystals confined to cylindrical cavities with
pure cholesteryl undecyl carbongtehUC), a nematic mix-  planar anchoring conditions. We have calculated the nematic
ture M5 with chiral dopant ChUC, and ferroelectric director fields and the resulting free energies of the axial,
p-decyloxy-bezylidengs-amino-2-methyl-butyl-cinnamate  helical andy helical structures, the bipolar helicglz twisted
(DOBAMBC). The pitch was varied by changing the tem- structure, three models of conical structure, and the radially
perature or the concentration of ChUC in the M5 mixture.twisted structure in the case of equal bend and splay elastic
The anchoring condition was supposed to be tangential witikonstants. Th& ;5 energy term has been neglected, but the
the preferred axis direction. The angular dependence of theK,, term has been taken into account. The saddle-splay term

V. CONCLUSION
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FIG. 10. Two model experimental distribution densities of a conical a@yland (b) from Ref.[15] for two different chiralities and two
theoretical distributiongc) for Q=2 and 3, corresponding to the model AC structure. The parameters for the theoretical distributions are

]C24:O, Wd,:Wg:S

significantly affects the asymmetric conical and radiallyour stability phase diagrams, but would make procedures
twisted structures and it plays an important role in phasenuch more complei24—-26. Therefore a more general form

diagrams. The radially twisted and asymmetric conical strucof the nematic director field is left for future considerations.
tures are the only ones that appear in the main regions of th&/e believe that it can lead to some mixed structures, for

phase diagram. The former structure is stable for lowefnstance, the RT structure, modulated by the conical struc-
chiralities and the latter for higher chiralities. We have alsoture in the core of the cylinder. This possibility is indicated

found that in general the pitch of the confined system iy the experiments of Lequex and Klemi@] and by Kitze-
different from the bulk value and depends on the ratios befOW et al. [23], who observed the helical instability of the
tween the bulk elastic constants. doubly twisted structure.

We have compared our results with some available ex-

perimental data and found good agreement. We have esti-
mated the value of saddle-splay elastic constant of nematic This research was funded in part by the Ministry of Sci-

5CB doped with CB15 and CEX,,/K~1.5+0.5. ence and Technology of Slovenia under Project No. J1-7067
A number of generalizations could be included in our cal-and by the European Commission under Project No. PECO
culations, which we expect would induce minor changes irERBCIPDCT940602.
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