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We report a theoretical study of various structures of chiral nematic liquid crystals, confined to submicrome-
ter cylindrical cavities with tangential anchoring conditions. The Frank-Oseen free energy with additional
surface energy terms is used to find nematic director fields, free energies, and stability diagrams of relevant
structures. The dependence of various chiral nematic structures on the chirality parameter, pore size, elastic
constants, and polar and azimuthal surface anchoring strengths is studied. We are particularly interested in the
influence of the saddle-splay elastic constant on the structures. For ordinary values of material parameters, only
radially twisted and asymmetric conical structure are stable. The former is stable at low chiralities, while the
latter is stable for high chiralities. The radially twisted structure is commonly known as double twisted
structure, while the asymmetric conical structure has not been considered, to the authors’ knowledge. The
phase diagram including both structures is determined by comparing their free energies. Theoretical predictions
are in agreement with available experimental data.@S1063-651X~96!01811-9#

PACS number~s!: 61.30.Cz, 64.70.Md, 61.30.Jf, 68.10.Cr

I. INTRODUCTION

Chiral nematic liquid crystals attract interest for funda-
mental and practical reasons@1,2#. Since the discovery of
polymer dispersed liquid crystals numerous experimental
and theoretical works have been performed on liquid crystals
confined to spherical and cylindrical geometries. Membranes
with well-defined submicrometer cylindrical pores allow for
detailed studies of highly curved confinement@3,4#. Cavity
walls may be chemically treated to achieve the desired an-
choring conditions. The behavior of chiral nematics in the
curved confining geometry was reported by Cladis, White,
and Brinkman@5#. Using optical polarizing microscopy, they
studied chiral nematic structures in supramicrometer capil-
lary tubes with homeotropic anchoring near the transition to
the smectic-A phase. Lequeux and Kleman@6# observed a
helicoidal instability of the double-twisted structure~ob-
served also in blue phases and here more precisely called the
radially twisted structure! in capillary tubes with homeotro-
pic anchoring by polarizing microscope. Bezicˇ and Žumer
studied defects of chiral nematic model structures in spheri-
cal and cylindrical confining geometry@7,8#. NMR is a use-
ful tool for investigations of nematic structures in submi-
crometer pores, where the optical microscopy is too rough
@9–11#. Using deuterium NMR spectroscopy, Ondris-
Crawfordet al. @10# studied a pitch-induced transition of chi-
ral nematic liquid crystals in submicrometer cylindrical cavi-
ties in Anopore membranes.

We study defectless chiral nematic liquid-crystal struc-
tures in cylindrical cavities with radii small compared to the
cylinder lengths, so that end effects can be neglected. We
investigate two kinds of planar anchoring conditions: degen-
erate planar anchoring and anchoring with the preferred di-
rection parallel to the cylinder axis~abbreviatedz anchor-
ing!. We calculate nematic director fields, free energies, and
stability ranges of radially twisted structures and other model
structures, with twist axes parallel or perpendicular to the
cylinder axis.

In Sec. II we establish theoretical grounds for our phe-
nomenological description of structures. In Sec. III we dis-
cuss relevant solutions of the Euler-Lagrange equations for
various model structures. We also compare the correspond-
ing free energies and calculate the stability phase diagrams.
In Sec. IV we analyze some available experimental results
and estimate values of both anchoring strengths and the
saddle-splay elastic constant. In Sec. V we discuss results
and give a conclusion.

II. FREE ENERGY

Our chiral nematic liquid crystal is simply described by a
nematic director fieldnW (rW) with an equivalence ofnW to
2nW . We neglect the biaxiality and space variation of the
scalar nematic order parameter. Polar coordinatesr , f, andz
are used for the calculation of the director fields and corre-
sponding free energies in cylindrical geometry, wherez is in
the direction of the cylinder axis. We denote the polar ortho-
normal set of vectors byeW r , eWf , andeW z . The free energy of
a chiral nematic liquid crystal in a cavity is usually divided
into a bulk and a surface term

F5E f VdV1E f SdS. ~1!

The bulk Frank-Oseen free-energy density@12# is a sum of
elastic deformation energy terms with different symmetries

f V5 1
2 @K11~¹W •nW !21K22~nW •¹W 3nW 1q!21K33~nW 3¹W 3nW !2

2K24¹W •~nW 3¹W 3nW 1nW ¹W •nW !#, ~2!

whereK11, K22, andK33 are splay, twist, and bend elastic
constants, respectively, andK24 is the saddle-splay elastic
constant. To make our discussion as simple as possible we
omitted the K13 ~splay-bend! energy term. The positive
chirality parameterq corresponding to the right-handed helix
is inversely proportional to the pitch of the unconfined phase:

PHYSICAL REVIEW E NOVEMBER 1996VOLUME 54, NUMBER 5

541063-651X/96/54~5!/5187~11!/$10.00 5187 © 1996 The American Physical Society



q52p/p. We call it the ‘‘natural inverse pitch’’ to distin-
guish it from the ‘‘actual inverse pitch’’q8 in the confined
geometry.

In the case of homogeneous planar anchoring the surface
free-energy density in the Rapini-Papoular approximation
@13# is the sum of a polar~out-of-plane! and an azimuthal
~in-plane! surface elastic term. For the description of experi-
mentally studied Anopore membranes, nondegenerate planar
anchoring with the easy axis parallel to the cylinder axis~z
axis! is assumed. This anchoring direction is probably effec-
tively enforced by slightly nonspherical cross sections of cy-
lindrical cavities. Thus one can write

f S5
1
2 ~Wfsin

2f81Wucos
2f8!sin2u8, ~3!

whereWf andWu are the azimuthal and the polar anchoring
strength, respectively,u8 is the angle between the nematic
director and thez axis, andf8 is the angle between the
(nW ,eW z) plane and the (eW r ,eW z) plane. In the case of degenerate
planar anchoringWf is zero and the surface free-energy den-
sity reduces tof S5

1
2Wusin

2u, whereu is the angle between
the nematic director and its projection on the boundary
plane. We focus our attention on the approximation of equal
splay and bend elastic constantsK115K33. This yields a
simple free energy and the corresponding Euler-Lagrange
equations. Nevertheless, the solutions have all the relevant
features of more general ones. Furthermore, we limit our-
selves to cylinder radiiR small compared to lengthsl . To
avoid a strange kind of anchoring, where the preferable plane
would be (eW r ,eW z) instead of (eWf ,eW z), we take into account
the conditionWf<Wu . It is convenient to introduce dimen-
sionless~‘‘reduced’’! quantities for the radius vector, chirali-
ties, elastic constants, and anchoring strengths:

r5
r

R
, ~4!

Q5qR, ~5!

Q85q8R, ~6!

K225K22/K33, ~7!

K245K24/K33, ~8!

Wf5RWf /K33, ~9!

Wu5RWu /K33, ~10!

F5
F

K33p l
, ~11!

W15Wu1Wf , ~12!

W25Wu2Wf . ~13!

In the following section we describe chiral nematic structures
that were considered in our search for the most stable chiral
ordering.

III. MODEL CHIRAL NEMATIC STRUCTURES
IN CYLINDERS

A straightforward search for general structures in cylin-
drical cavities with planar anchoring would be a big numeri-
cal task. Therefore, we instead choose various model struc-
tures and check for their thermodynamic stability. According
to the twist character, we can divide them into three main
groups. In the first group there is only the axial~A! structure
with no twist. In the second group there are structures with a
twist around a single axis. Furthermore, we can divide this
group into two subgroups, where the chosen twist axis isz
~along the cylinder axis! or y ~perpendicular to the cylinder
axis!, respectively. In the first subgroup there arez helical
~ZH! structure and bipolar helical~BH! structure, while in
the second subgroup we havey helical ~YH! structure. The
third group, which contains structures with a twist around
two axes, can also be divided into two subgroups. In the first
one, where the local twist axes arey and z, there is ayz
twisted ~YZ! structure and three kinds of conical structures:
simple~SC!, bipolar~BC!, and asymmetric~AC!. In the sec-

FIG. 1. Upper part: simple chiral nematic structures in cylinder
cavities: ~a! axial ~A!, ~b! z helical ~ZH!, ~c! y helical ~YH!, ~d!
bipolar helical ~BH!, ~e! simple conical ~SC!, and ~f! radially
twisted ~RT!. An arrow indicates the direction of thez axis. Bot-
tom: grouping of all discussed@including yz twisted ~YZ!, bipolar
conical~BC!, and asymmetric conical~AC!# structures according to
their twist character. Arrows indicate the generalization of one
structure into another.
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ond subgroup with twist axesx andy there is only radially
twisted ~RT! structure. In Fig. 1 the majority of these struc-
tures are schematically presented; also the twist character
and connections between different structures are shown. The
number and directions of local twist axes need not be seen
immediately, but one can determine them by using the twist
pseudotensor introduced by Kilian and Sonnet@14#.

A. Axial structure

In this structure the nematic director is parallel to the
cylinder axis: nW 5eW z . Its free energy originates from the
twist elastic termF5 1

2Q2. The axial structure is stable only
in the limit of zero chirality.

B. z helical structure

This structure corresponds to the helical structure of un-
confined chiral nematic liquid crystals, with the helical axis
parallel to cylinder axis:nW 5(cosqz,sinqz,0). Its free energy
is equal to1

2W1 .

C. Bipolar helical structure

This structure is a generalization of a planar bipolar struc-
ture @9#, which is characteristic for nonchiral nematic liquid
crystals, confined to cylinders with concentric planar anchor-
ing. The director field of a bipolar helical structure can be
written as nW 5cosc(r,f8)eWr1sinc(r,f8)eWf , where c is the
angle between the radius unit vectoreW r and the local nematic
director. The rotation of the symmetry axisx around thez
axis is incorporated in the linear increase of the polar angle
yielding the polar angle in a rotating coordinate system
f85f2q8z. The actual chiral parameterq8 can be different
from the natural one (q). Since the BH structure has already
been reported~see the axially twisted planar bipolar structure
in Ref. @10#!, only a short description will be given here. The
twist elastic constant can be integrated into the inverse pitch
Q→AK22Q or Q8→AK22Q8. So it is sufficient to describe
theK2251 results. TheK24 energy term is zero in this struc-
ture. The minimization of the Frank free energy results in a
partial differential equation for the anglec, which is solved
numerically. Finally, the actual inverse pitchq8 is adjusted
to give the lowest free energy. The nematic director does not
depend on the azimuthal and polar anchoring strengths sepa-
rately, but only on their differenceW2 . The free energy can
be written as a sum of a part, which corresponds to degen-
erate planar anchoring, and an azimuthal anchoring strength
F~Wf ,Wu ,Q, . . . !5F~0,W2 ,Q, . . . !1Wf . In the case of
equal anchoring strengthsWf5Wu5

1
2W1 this reduces to the

z helical value1
2W1 .

In the limit of zero chirality the solution converges to the
ordinary planar bipolar structure@9# for nonchiral nematic
liquid crystals:

c~r,f!52arctanS tanf 11gr2

12gr2D , ~14!

where g5Aj2112j and j52/Wu . For small chiralities
Q,0.5 the use of Eq.~14! is justified, exceptf must be
substituted byf8. The shape of the nematic director field in
the ‘‘helical’’ ( x,y) plane is nearly the same as for zero

chirality, except that the symmetryx axis rotates around the
z axis. For higher chiralities the director field in the helical
plane is better aligned~Fig. 2! and in the high-chirality limit
we obtain az helical structure. The actual chiralityQ8 is
somewhat smaller than the natural valueQ. The difference
Q2Q8 is smaller than 0.2 in the whole range~0,Q,` and
0,Wu,5! that we studied. The difference is the largest for
chiralities of order 1. In the zero- and high-chirality limit the
difference between chiralities vanishes.

For fixed values of other physical parameters the calcu-
lated free energy increases with chirality. In the high-
chirality limit the free energy approaches the helical value
W1/2.

D. y helical structure

y helical structure is similar toz helical structure, except
that here we have a twist of nematic director around they
axis rather than around thez axis. To avoid a repetition, we
will describe the behavior of the free energy together with
the results for a more generalyz twisted structure. Here we
just mention the somehow surprising result that the YH free
energy has been found to be always lower than the ZH and
BH free energies.

E. yz twisted structure

In the yz twisted structure there is a twist of the nematic
director around two axes: thez cylinder axis and an axis,
perpendicular toz, say, they axis. The nematic director can
be written as

nW 5„cos~q8z!sinb,sin~q8z!sinb,cosb…, ~15!

where b5q9y81a and y852x sin(q8z)1y cos(q8z).
Here b is the angle of the rotation of the nematic director
around the localy8 axis with inverse pitchq9, while the axis
y8 rotates around thez axis with inverse pitchq8. If there
was no rotation around thez axis, the nematic director would
be nW 5„sinb,0,cosb… with b5q9y1a. In this case one
would have ay helical structure. With the additional rotation
around thez axis, both nematic director components and
Cartesian variables must be transformed. On the other hand,
thez helical structure is also a special case of theyz twisted
structure. We have added an optional anglea to the twist
angle b, which influences the free energy. Similarly, we
could add an angle to the twist angleq8z around thez axis,
but this would have no effect on the free energy because we

FIG. 2. Nematic director field of the BH structure forK2251,
W254, and three different values of chirality:Q50 ~solid lines!,
Q52 ~dashed lines!, andQ55 ~dotted lines!.
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assume long cylinders and periodicity in thez direction. First
the free energy is calculated and then the free parametersq8,
q9, anda are adjusted to minimize it. In confined systems,
both chiralitiesq8 and q9 are generally different from the
natural chiralityq. The nematic director can be easily trans-
formed into cylindrical coordinates

nW 5sinb cosf8eW r2sinb sinf8eWf1cosbeW z ,

where, as for the BH structure,f85f2q8z is the azimuthal
angle in the coordinate system rotating around thez axis. To
make equations simpler, we calculated the bulk and surface
free-energy densities only in the case of equal elastic con-
stants:

f V5
K

2R2 @~Q92Q!21„2~12K24!Q8Q9

22QQ81Q82…sin2b1~Q8Q9r cosf8!2#, ~16!

f S5
K

2R
~Wfsin

2f1Wucos
2f!sin2b. ~17!

Of course, here we takeQ5qR, and similarly forQ8 andQ9.
According to the relation for the Bessel functions
Jn(x)5(1/2p)* 0

2p cos~x sinf2nf)df, the resulting di-
mensionless free energy is

F5
1

2
~Q92Q!21

Q8

4
@2~12K24!Q922Q1Q8#

3S 12cos~2a!
J1~2Q9!

Q9 D1
1

8
~Q8Q9!21

1

4

3$W1@12cos~2a!J0~2Q!#2W2cos~2a!J2~2Q!%.

~18!

The anglea can be either 0 orp/2: this corresponds to the
nematic director at the cylinder axis parallel or normal to the
axis, respectively. The optimal value of the chirality around
the z axisQ8 can be expressed in terms ofQ9. The optimal
value of Q9 is obtained numerically. Keeping anchoring
strengths andK24 fixed while increasing the natural chirality
Q, there are alternating intervals, wherea50 or p/2. At the
transition pointsa50↔a5p/2 there are also discontinuous
jumps inQ8, Q9, and the slope of energy as functions of
natural chirality. TheK24 elastic energy term lowers the total
free energy, but otherwise it does not have a significant ef-
fect on the nematic structure. In Fig. 3 the dependence of
both actual chiralities on the natural chirality is shown for a
particular choice of anchoring strengths. We have found that
for all anchoring strengths between 1 and 10 and for natural
chiralities from 0 to 30 the twist around thez axis is negli-
gible in comparison to the twist around they axis.Q8 andQ9
are comparable for low chiralities, but for the effective twist-
ing about thez axis only the very small projection of the
nematic director on thexy plane counts. The graph for all
examined anchoring strengths is qualitatively the same as in
Fig. 3. The zero-chirality limit of theyz twisted structure is
the axial structure, while the high-chirality limit is they
helical structure~with Q9→Q! and the limiting free energy
is 1

4W1 , equal to half of thez helical value.

F. Simple conical structure

This structure is also a generalization of thez helical
structure, which was suggested by Schmiedelet al. on the
basis of their NMR and optical experiments@15#. A deflec-
tion of the nematic director field out of thexy plane is al-
lowed, but its projection to that plane is assumed to be
in one direction: nW 5sinu(r)cos(q8z)eWx1sinu(r)sin(q8z)eWy
1cosu(r)eWz, where the tilt angleu depends only on the
radius r. The nematic director, rewritten in polar coordi-
nates, is equal to nW 5sinu(r)cosf8eWr2sinu(r)sinf8eWf
1cosu(r)eWz, where, as in the BH case, we introduce the azi-
muthal anglef85f2q8z in the rotating coordinate system.

After integration overf andz the expression for the re-
duced free energy becomes

F5E
0

1F11K22

2 S du

dr D 22~2K22Q8Q2Q82!sin2u

1~K2221!Q82sin4uGr dr1
K22

2
Q21

W1

2
sin2u~1!.

~19!

The minimization of the free energy with respect to the angle
u leads to the equation

d2u

dr2
1
1

r

du

dr
1A sin2u2B sin4u50, ~20!

FIG. 3. Actual inverse pitches of YZ structure as functions of
natural chirality forK2251, Wf5Wu53, and different values of
saddle-splay elastic constant:K2450 ~solid lines!, K2450.5 ~dashed
lines!, andK2451 ~dash-dotted lines!. The dotted line indicates the
limit Q95Q. All chiralities are dimensionless.
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where we have introduced the constantsA5@K22/
~11K22!#~2QQ82Q82! and B5@~12K22!/2~11K22!#Q82.
The boundary condition is

S du

dr
1

W1

2~11K22!
sin2u D

r51

50. ~21!

This equation is solved by the relaxation method for ordinary
differential equations. As in the BH case, theK24 energy
term has no influence on the simple conical structure. The
nematic director and free energy do not depend on each an-
choring strength separately, but only on their sumW1 .

The relation between the actual and natural inverse pitch
is different from that in the BH case. ForK22.1 we get
Q8.Q, while for K22,1 the opposite is the case. For equal
elastic constants the inverse pitches are equal. For fixedW1

we get three different structures for different values ofQ.
ForQ<Q1 the axial structure is stable; conical structure per-
sists betweenQ1 andQ2; aboveQ2 we have thez helical
structure. The bottom limitQ1 and the upper limitQ2 of the
SC structure are increasing functions ofW1 . Both transi-
tions atQ1 andQ2 are continuous. Of course, A and ZH
structures can be viewed as limiting cases of the SC struc-
ture. Unlike the BC structure, the SC structure converges
into the ZH structure at finite chirality parameters.

The problem with this approximation for the conical
structure is that for common values of physical parameters
its free energy is always higher than the free energy of the
radially twisted structure~Fig. 4!. Therefore we introduce
two further modifications of this simple model with the aim

of reducing the free energy and making the conical structure
stable in a part of the calculated phase diagram.

In the first model, which we call bipolar conical structure,
there is an additional deformation of the nematic director in
the (x,y) plane. In the second modification we neglect this
deformation, but consider the dependence of the conical tilt
angle on both the radius and the azimuthal angle. The mirror
symmetry with respect to localx8 and y8 axes of the tilt
angle is therefore broken, which we stress by introducing the
term asymmetric conical structure.

We must emphasize the similarity of the twist character of
theyz twisted structure and all our conical models. Although
it may seem at first glance that for conical structures there is
only a twist around thez axis, in fact, there is also a local
twist around the rotatingy8 axis because of the tilt of the
nematic director out of the (x,y) plane. Let us now describe
in more detail the two modified conical structures~Secs.
III G and III H!.

G. Bipolar conical structure

The nematic director in this case is a combination of
the BH and SC structures:nW 5sinu(r)cosc(r,f8)eWr

1sinu(r)sinc(r,f8)eWf1cosu(r)eWz, where again f85f
2q8z. We require the symmetry of the nematic director with
the respect to both thex8 andy8 axes in the rotating coordi-
nate frame, as in the case of the BH structure. The tilt angle
depends only on the radius, as in the simple conical model.

Minimization of the free energy with respect to variables
u andc yields a coupled system of an ordinary and a partial
differential equation, which is solved numerically, and then
the free energy is calculated. The free energy is minimized
with respect to the twist parameterQ8. It turns out again~as
for the BH structure! that the actual inverse pitch can be
approximated by the natural one. KeepingWf andWu fixed
and increasing the inverse pitch we get three structures, as in
the case of the simple conical model. Instead of the phase
sequence A→SC→ZH, we have now the sequence
A→BC→BH. The BC free energy is very near the SC value
in almost all cases, except near the BC→BH transition. It is
still higher than the RT free energy. Also the boundary val-
ues of the chiralitiesQ1 andQ2, where continuous transi-
tions happen, are almost the same as in the simple conic
model ~for the same anchoring strengths!. The main differ-
ence is that here we have a transition to a bipolar helical
structure instead of to az helical structure. But at the point
Q2 where this happens, the BH structure is almost equal to
the helical limit ZH structure. So the BC modification of the
simple conic model does not bring any qualitative difference
in the predicted behavior of the liquid crystal.

H. Asymmetric conical structure

Here the ansatz for the nematic director is the same
as in the simple conical model, except that we allow
the angular dependence of the tilt angle as well as the radial
dependence nW 5sinu(r,f8)cos(q8z)eWx1sinu(r,f8)sin(q8z)eWy
1cosu(r,f8)eWz. As before, we use the notationf85f2q8z.
We consider the case of equal elastic constantsKii , but we
allow the variation ofK24. We require no symmetry of the
azimuthal dependence of the tilt angle. This has significant
consequences on the equilibrium nematic director field, re-

FIG. 4. Reduced free energy of different structures as a function
of the reduced chirality parameter forK2251, K2451,Wu54, and
two values ofWf : 0 ~full lines! and 2~dotted lines!.
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sulting free energy, and the stability of the conical structure.
The expression for the bulk free-energy density is

f V5
K

2R2 F S ]u

]r D 21S 1r2 1Q82D S ]u

]f8D
2

12~Q8sin2u2Q!
]u

]r
sinf81

2

r
~Q8sin2u2Q!

3
]u

]f8
cosf81~Q8222QQ8!sin2u1Q2G ~22!

and the surface free energy density is equal to

f S5
K

2R F ~Wfsin
2f81Wucos

2f8!sin2u

2K24Q8S ]u

]f8
cosf82

1

2
sin2u sinf8D G . ~23!

The resulting Euler-Lagrange differential equation is

]2u

]r2
1
1

r

]u

]r
1S 1r2 1Q82D ]2u

]f82

1
1

2
~2QQ82Q82!sin2u50, ~24!

with the boundary condition

F]u

]r
1~12K24!Q8sin2u sinf82Q sinf8

1
1

2
~Wfsin

2f81Wucos
2f8!sin2u] r5150. ~25!

This differential equation is solved numerically by the relax-
ation method. It turns out that for many physical parameters
the sinusoidal dependence of the conic angle is quite a good
approximation:u(r,f8)' f (r)1g(r)sinf8, wheref is a de-
creasing function of the radius, whileg increases with the
radius andg(0)50. This contradicts the simple conical
model ~Fig. 5!.

For low chiralities f50, g is approximately linear, and
the nematic structure is similar to the YZ structure. For

chiralities above some critical value the tilt angle at the cyl-
inder axis is different from zero and the twist of the nematic
director about thez axis becomes appreciable. For still
higher chiralities we getf (r)[p/2 and the structure be-
comes more similar to planar structures. The chirality about
the z axis rises and in the high-chirality limit it approaches
the natural value~if K24.0!. TheK24 energy term is very
important in the asymmetric conical structure. In the high-
chirality limit it makes its energy even highly negative, thus
much lower than the RT and YZ free energies. It also makes
the structure planarlike, although not completely planar.
Only in the caseK2450 does the AC structure approach the
y twisted structure in the high-chirality limit. With increas-

FIG. 5. Comparison of the nematic director field of a simple conical~left! and an asymmetric conical~right! structure in the (x8,y8)
plane. Heads on the nails indicate the inclination in the negativez direction. The parameters areK2451,Wf5Wu53, andQ52.2.

FIG. 6. Amplitudeg of the sinusoidal modulation of the conic
angle in the AC structure as a function of the reduced radius@in the
approximation u(r,f8)'p/21g(r)sinf8#. The parameters are
Wu54,Wf52, K2451, and different values ofQ.
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ing chirality towards very high values the functiong be-
comes more and more singular: it is almost zero inside, but it
sharply increases to a finite value at the cylinder boundary.
Some examples of this function are shown in Fig. 6. This
indicates the possible formation of defects on the cylindrical
boundary in the high-chirality limit. For low chiralities the
chiralityQ8 is smaller than natural chiralityQ, but for higher
chiralities their difference vanishes.

A more detailed description of this structure will be given
elsewhere, together with a more general model of the conical
structure, where also a deformation of the nematic director
field projection within thexy plane is included. This requires
the numerical solution of the system of two partial differen-
tial equations, so it takes a lot of computational time to cover
enough of the parameter space. We have already succeeded
in using the more general model in some narrow range of
parameters,~especially for very low chiralities! and we have
found that the resulting free energies are very similar to the
energies of the simpler asymmetric conical structure pre-
sented here.

I. Radially twisted structure

The nematic director of the radially twisted structure, gen-
erally known as the ‘‘double twisted structure’’@6,16#, can
be written asnW 5sina(r)eWf1cosa(r)eWz, where the twist angle
a between the cylinder axis and nematic director depends
only on the radiusr. Here the nematic director rotates around
any radial axis, i.e., any axis perpendicular to the cylinder
axis.

The double twist character of this director field is pro-
nounced at the cylinder axis and gradually fades away for
increasing radiusr. This structure also plays an important
role in the theory of blue phases@16–18#. The RT structure
has already been described in@10# and also in many other
articles@6#, so we give just a brief description here. As in the
asymmetric conical structure, theK24 term is significant. It
acts in a way similar to surface anchoring, but contrary to
anchoring it lowers the RT free energy and makes the RT
phase stable in a part of the phase diagram. The importance
of theK24 elastic constant has been appreciated recently and
several experiments have been performed to determine its
value @19–21#. The minimization of the Frank free energy
leads to the ordinary differential equation for the twist angle,
which is solved numerically. The solution fora~r! and the
free energy depends strongly onK24. The dependences of
the angle at the cylinder boundarya~1! and of the free en-
ergy on chiralityQ for fixed saddle-splay elastic constant
have some interesting properties. There is a qualitative dif-
ference between the caseK24,0.36 and the caseK24.0.36.
In the former case the boundary twist angle is a continuous
function of the inverse pitch, while in the latter case there are
discontinuous jumps at particular values ofQ ~Fig. 7!. These
jumps are caused by the competition between the twist en-
ergy term andK24 term. The free energy as a function ofQ
has minima and maxima. Minima are always smooth, while
for K24.0.36 the derivatives of the free energy with respect
to Q at maxima are discontinuous. The free energy as a
function of inverse pitch has a sawtooth shape. The period
between the minima or maxima is approximatelyp.

FIG. 7. Twist angle of the RT structure at the cylinder boundary
as a function of the reduced chirality forK2251,Wf50, and dif-
ferent values ofK24: 1 ~solid lines!, 0 ~dashed lines!, and22 ~dot-
ted lines!.

FIG. 8. RT-AC phase diagram in the~Q,Wu! plane forK2451
andWf53. Both coordinates of the diagram are reduced~dimen-
sionless!.
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IV. PHASE DIAGRAMS AND THE EXPLANATION
OF EXPERIMENTS

We have found out that among all the structures that we
considered, only radially twisted and asymmetric conical ap-
pear in phase diagrams, except at zero chirality, where we
have axial structure. The RT structure is stable at low chirali-
ties, while the AC structure is stable for high chiralities. All
other structures have higher free energies.

The simplest representation of the phase diagram is ob-
tained by fixing the values of elastic constants and one of the
anchoring strengths. Then the phase diagram can be shown
in two-dimensional space, where one coordinate is the in-
verse pitch and the other is the variable anchoring strength.
Even in this case the computation of the phase diagram takes
a lot of time. Therefore we present here only one calculated

example of the phase diagram for chosen parameters
K225K2451 andWf53 ~Fig. 8! and focus our attention on a
discussion of available experimental data.

In an experiment by Ondris-Crawfordet al. the non-
chiral nematic liquid crystal 5CB-ad2 ~deuterated
48-pentyl-4-cyanobiphenyl! with chiral agents CB15 and
CE2 ~EM Industries! was used@10#. The chirality was con-
trolled by variable concentrations of chiral agents. The mix-
ture was filled into the cavities~R50.1 mm! of Anopore
membranes, which are supposed to give planar anchoring
conditions. The director field inside the cavities was ob-
served by deuterium NMR with the magnetic field parallel
and normal to the cylindrical axis. Increasing the chirality of
the mixture, the NMR spectra indicate a transition from a
definitely nonplanar structure to a roughly planar structure at

FIG. 9. Comparison between the~a! experimental NMR spectra from Ref.@10# and~b!–~e! calculated spectra for a magnetic field parallel
(uB50) and normal (uB590°) to the cylinder axis for different pitches. Dashed lines in~d! and~e! indicate the spectra of limitingz helical
structure. Frequencies and intensities in theoretical spectra are dimensionless. Intensities are normalized in a way to make the area under the
curves equal to 1. For definition of the dimensionless frequency see the text.
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a pitch value of about 0.7mm. The suggested low-chirality
structure was radially twisted, while the high-chirality struc-
ture was supposed to be bipolar helical with a planar director
field. Conical structures were not considered. Comparing the
free energies, we calculated phase diagrams with BH and RT
structures. After comparing BH-RT phase diagrams for dif-
ferent values of the saddle-splay elastic constantK24 in the
case of equal bulk elastic constants and degenerate planar
anchoring, the valueK24 was predicted to be 0.160.1. The
anchoring strength was estimated also:Wu'0.15. Both the
value of the saddle-splay elastic constant and of the polar
anchoring strength are an order of magnitude smaller than
the ones predicted by several other experiments.

Here we have shown that the high-chirality structure
should be asymmetric conical instead of bipolar helical form.
From the nematic director field the NMR spectra for differ-
ent structures were calculated, taking the half-width of spec-
tral lines to be 0.1 by making a convolution with the Gauss-
ian curve. The value 0.1 is taken in units of normalized
frequencyn, where the two peaks in NMR spectra of axial
structure with the magnetic field parallel to cylinder axis are
at the positionsn561. A comparison of the calculated and
measured spectra~Fig. 9! indicates the following. First, the
low-chirality structure is really RT and we can also make an
estimationK242Wf'1. Thus the value ofK24 must be at
least 1. From various experimental data the actual value
seems to be 1,K24,2. Thus we investigated this interval
and by a comparison of RT and AC free energies we ob-
tained the values of polar anchoring strength 0,Wu,1. On
the basis of this argument theK24 value seems to be closer to
2 than to 1. We estimated the values of the parameters
K24'1.560.5, Wu'0.560.5, andWf'0.560.5. Taking a
typical value of bulk elastic constantsKii'5310212 J/m,
we obtain K24'(7.562.5)310212 J/m and Wu ,Wf
'(2.562.5)31025 J/m2. The agreement between the spec-
tra for the RT structure is very good@Figs. 9~a!–9~c!#.
Agreement between the calculated and experimental spectra
for the AC structure is somewhat worse@Figs. 9~a!, 9~d!, and
9~e!#, but nevertheless all important features of the spectra
are qualitatively explained. The asymmetric conical structure
should be more planarlike, i.e., the calculated spectra should
be closer toz helical spectra@dashed lines in Figs. 9~d! and
9~e!#. This inconsistency may appear because we do not treat
the most general model, where we would also have a defor-
mation of the nematic director field within the (x,y) plane.
In theoretical spectra@Figs. 9~b!–9~e!#, the chiralities corre-
spond to experimental pitches@Fig. 9~a!# p51.13 mm
→Q50.56, p50.66 mm→Q50.95, andp50.25 mm→Q
52.5.

In another experiment, performed by Schmiedel and co-
workers @15,22#, optical measurements and2H and 13C
NMR studies were performed on chiral nematic liquid crys-
tals adsorbed in Anopore membranes with cylindrical pores
of radius 0.1mm. Three types of compounds were used:
pure cholesteryl undecyl carbonate~ChUC!, a nematic mix-
ture M5 with chiral dopant ChUC, and ferroelectric
p-decyloxy-bezylidene-p-amino-2-methyl-butyl-cinnamate
~DOBAMBC!. The pitch was varied by changing the tem-
perature or the concentration of ChUC in the M5 mixture.
The anchoring condition was supposed to be tangential with
the preferredz axis direction. The angular dependence of the

NMR spectra was obtained by rotating the NMR glass tube
around its axis, where the pore axes were uniformly directed
normal to the rotation axis. Simulation of the angular depen-
dence of NMR spectra leads to the estimation of the tilt angle
distribution of the molecules with respect to thez axis. They
also found the optical activity in their samples for a wide
range of chiralities. The polarization of the light incident in
the cylinder axis direction rotates around that axis, which is
not the case for the RT structure. They suggested the struc-
ture to be simple conical. On the basis of the NMR spectra
for different directions of the magnetic field they calculated
the distribution of conical angle. In Fig. 10 two of their dis-
tributions@~a! and~b!# are compared to the ones obtained for
the asymmetric conical structure@~c!#. Unfortunately, the au-
thors @15# do not specify the chiralities used in the corre-
sponding experiments. Therefore, we just take a set of pa-
rameters that yield qualitatively similar distributions. We
also calculated the angular distribution densities for the
angles between the nematic director and thez axis for other
structures considered, but they are all qualitatively different
from the experimental functions.

As we have seen, no planar structures appear to be stable
for degenerate anchoring orz anchoring. In the high-chirality
case the stable asymmetric conical structure exhibits a ‘‘qua-
siplanar’’ behavior. But it should be stressed that it is stable
only because of the nonzeroK24 elastic energy term. For
K2450 the structure with rotation of the nematic director
around the axis, perpendicular to the cylinder axis, is more
stable than the structure with rotation of the nematic director
around the cylinder axis. If we generalize the form of the AC
director field to include the deformation of its projection in
the (x,y) plane, the new structure is expected to have fea-
tures of both asymmetric conical and bipolar helical struc-
tures. We have shown that upon increasing chirality the nem-
atic director field of the planar BH structure is more and
more aligned. But in the strong anchoring limit the strong
deformation of nematic director fields at particular points at
the cylinder boundary~which results in defects! persists even
for high chiralities. On the other hand, the AC structure is
more and more planar in the high-chirality limit. Therefore,
it is expected that the generalized AC structure is very simi-
lar to the BH structure for high chiralities. Thus, in the case
of very strong anchoring and high chiralities, the study of
defects in the chiral planar bipolar structures by Bezicˇ and
Žumer @8# may be of interest. In@8# topological features
were studied, but not the detailed nematic director fields and
free energies. In addition, it should be stressed that the sta-
bility of planar structures could be enhanced if the preferred
anchoring direction iseWf ~concentric planar anchoring! in-
stead ofeW z .

V. CONCLUSION

We have reviewed various model structures of chiral
nematic liquid crystals confined to cylindrical cavities with
planar anchoring conditions. We have calculated the nematic
director fields and the resulting free energies of the axial,z
helical andy helical structures, the bipolar helical,yz twisted
structure, three models of conical structure, and the radially
twisted structure in the case of equal bend and splay elastic
constants. TheK13 energy term has been neglected, but the
K24 term has been taken into account. The saddle-splay term
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significantly affects the asymmetric conical and radially
twisted structures and it plays an important role in phase
diagrams. The radially twisted and asymmetric conical struc-
tures are the only ones that appear in the main regions of the
phase diagram. The former structure is stable for lower
chiralities and the latter for higher chiralities. We have also
found that in general the pitch of the confined system is
different from the bulk value and depends on the ratios be-
tween the bulk elastic constants.

We have compared our results with some available ex-
perimental data and found good agreement. We have esti-
mated the value of saddle-splay elastic constant of nematic
5CB doped with CB15 and CE2:K24/K'1.560.5.

A number of generalizations could be included in our cal-
culations, which we expect would induce minor changes in

our stability phase diagrams, but would make procedures
much more complex@24–26#. Therefore a more general form
of the nematic director field is left for future considerations.
We believe that it can lead to some mixed structures, for
instance, the RT structure, modulated by the conical struc-
ture in the core of the cylinder. This possibility is indicated
by the experiments of Lequex and Kleman@6# and by Kitze-
row et al. @23#, who observed the helical instability of the
doubly twisted structure.
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FIG. 10. Two model experimental distribution densities of a conical angle~a! and~b! from Ref.@15# for two different chiralities and two
theoretical distributions~c! for Q52 and 3, corresponding to the model AC structure. The parameters for the theoretical distributions are
K2450,Wf5Wu53.
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@7# J. Bezičand S. Žumer, Liq. Cryst.11, 593 ~1992!.
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S. Žumer, Phys. Rev. E49, 978 ~1994!.

@22# Ch. Cramer, H. Schmiedel, and G. Feller~unpublished!.
@23# H. S. Kitzerow, B. Liu, F. Xu, and P. P. Crooker, Phys. Rev. E

54, 568 ~1996!.
@24# V. M. Pergamenshchik, Phys. Rev. E48, 1254~1993!.
@25# V. M. Pergamenshchik, P. I. C. Teixeira, and T. J. Sluckin,

Phys. Rev. E48, 1265~1993!.
@26# G. Barbero and A. Strigazzi, Liq. Cryst.5, 693 ~1989!.

54 5197CHIRAL NEMATIC LIQUID CRYSTALS IN . . .


